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a b s t r a c t 

Manifold regularization (MR) provides a powerful framework for semi-supervised classification (SSC) 

learning. It imposes the smoothness constraint over a constructed manifold graph, and its performance 

largely depends on such graph. However, 1) The manifold graph is usually pre-constructed before classifi- 

cation, and fixed during the classification learning process. As a result, independent with the subsequent 

classification, the graph does not necessarily benefit the classification performance. 2) There are param- 

eters needing tuning in the graph construction, while parameter selection in semi-supervised learning 

is still an open problem currently, which sets up another barrier for constructing a “well-performing”

manifold graph benefiting the performance. To address those issues, we develop a novel semi-supervised 

manifold regularization with adaptive graph (AGMR for short) in this paper by integrating the graph 

construction and classification learning into a unified framework. In this way, the manifold graph along 

with its parameters will be optimized in learning rather than pre-defined, consequently, it will be adap- 

tive to the classification, and benefit the performance. Further, by adopting the entropy and sparse con- 

straints respectively for the graph weights, we derive two specific methods called AGMR_entropy and 

AGMR_sparse, respectively. Our empirical results show the competitiveness of those AGMRs compared to 

MR and some of its variants. 

© 2017 Published by Elsevier B.V. 
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1. Introduction 

In many real applications, unlabelled data can be easily and

cheaply collected, while the acquisition of labelled data is usually

quite expensive and time-consuming, especially involving manual

effort, e.g., in web page recommendation and spam email detec-

tion. Consequently, semi-supervised classification, which exploits a

large amount of unlabelled data jointly with the limited labelled

data for classification learning, has attracted intensive attention

during the past decades [7,25,26,28] . 

Generally, semi-supervised classification methods attempt to

exploit the intrinsic data distribution information disclosed by the

unlabeled data in learning. To exploit the unlabeled data, some as-

sumption should be adopted for learning. Two common assump-

tions in semi-supervised classification are the cluster assumption

and the manifold assumption [7,19,26] . The former assumes that

similar instances are likely to share the same class label, thus
∗ Corresponding author. 
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uides the classification boundary passing through the low den-

ity region between clusters. The latter assumes that the data are

esided on some low dimensional manifold represented by a Lapla-

ian graph, and similar instances should share similar classifica-

ion outputs according to the graph. Almost all off-the-shelf semi-

upervised classification methods adopt one or both of those as-

umptions explicitly or implicitly [7,25] . For instance, the large

argin semi-supervised classification methods, such as Transduc-

ive Support Vector Machine (TSVM) [15] , semi-supervised SVM

S3VM) [11] and their variants [8,17] , adopt the cluster assump-

ion. The graph-based semi-supervised classification methods, such

s label propagation [4,27] , graph cuts [5] and manifold regulariza-

ion (MR) [3] , adopt the manifold assumption. 

The graph-based semi-supervised classification methods are

ainly transductive ones, except MR. Although transductive meth-

ds have specific applications, many real tasks need predicting un-

een instances, thus need inductive methods. As a result, as an

nductive graph-based semi-supervised classification method, MR

as attracted much attention and applied in many learning tasks

uch as image retrieval [14] and web spam identification [1] , etc.

n this paper, we will concentrate on the MR framework [3] . 

http://dx.doi.org/10.1016/j.patrec.2017.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.09.004&domain=pdf
mailto:wangyunyun@njupt.edu.cn
http://dx.doi.org/10.1016/j.patrec.2017.09.004
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The learning process of MR includes two steps: First, a man-

fold graph is constructed to describe the manifold structure of

nstances, in which the graph nodes represent instances, and the

eights represent the similarities between instances. Then, accord-

ng to the manifold assumption, the smoothness constraint over

he constructed graph is implemented in terms of regularization.

he construction of manifold graph is critical for the performance

f MR. Once a “well-performing” graph benefiting the subsequent

lassification is constructed, it can finally help boost the classifi-

ation performance. Otherwise, it will not help the classification,

r even hurt the performance. However, on one hand, the graph is

sually defined in advance and kept fixed during the learning pro-

ess. It is actually impossible for us to judge whether a graph is a

well-performing” graph in advance. As a result, it is really difficult

o construct a “well-performing” graph before classification. On the

ther hand, there are parameters needing tuning in the manifold

raph, whereas in semi-supervised learning with limited label in-

ormation, the parameter selection is still an open problem with

o effective solution yet. It sets up another barrier for graph con-

tructing for MR in advance. As far as we know, the existing im-

rovements of MR either attempt to select the regularization pa-

ameters [12] , or try to improve the efficiency of MR [23,21] , few

esearches have concentrated on graph construction up to now. Ac-

ually, the graph learning issue is considered as a separate topic

nder research currently, although the adaptive graph construction

as been studied in GoLPP [24] for dimension reduction, MR and

ts improvements mainly adopt a pre-constructed graph. 

To address the above two issues, we aim to develop a new MR

ramework for semi-supervised classification here by introducing

n adaptive graph (AGMR for short). In AGMR, the construction of

anifold graph is incorporated into the classification learning. In

his way, the manifold graph along with its parameters can be au-

omatically adjusted in learning rather than specified in advance.

he graph construction and classification learning are combined

ogether, thus can be more likely to benefit each other. Further, by

dopting the entropy and sparse constraints for the graph weights,

espectively, we derive two specific methods called AGMR_entropy

nd AGMR_sparse, respectively. The implementation follows an al-

ernating iterative strategy to optimize the decision function and

he manifold graph, respectively. Each step in the iteration results

n a closed-form solution, and its iterative convergence can theo-

etically be guaranteed. Experiments on several real datasets show

he competitive performance of AGMR compared with MR and its

mprovements with different graph constructed. 

The rest of this paper is organized as follows. Section 2 intro-

uces the related works, Section 3 presents the proposed graph-

daptive MR framework, Section 4 gives the empirical results, and

ome conclusions are drawn in Section 5 . 

. Related works 

Given labeled data X l = { x i } l i =1 
with the corresponding labels

 = { y i } l i =1 
, and unlabeled data X u = { x j } n j= l+1 

, where each x i ∈ R d 

nd u = n - l . G = { w i j } n i, j=1 
is a pre-specified Laplacian graph over

he whole dataset, where each weight w ij represents the similar-

ty between the connected instances x i and x j . There are two ways

or deciding whether x i and x j are connected. One is the k -nearest

eighbor strategy, i.e., x i and x j are connected if x i is in the k -

earest neighbor of x j (or x j is in the k -nearest neighbor of x i ). The

ther is the ε-ball nearest neighbor strategy, i.e., x i and x j are con-

ected when ‖ x i − x j ‖ 2 < ε. The weights over the graph describe

he similarities between the connected instances, and can be spec-

fied by several weighting strategies. For example, the 0–1 weight-

ng, i.e., w ij = 1 if x i and x j are connected by an edge over the graph,

he heat kernel weighing with w i j = e −
‖ x i −x j ‖ 2 

σ if x i and x j are con-
ected, or the dot-product weighting with w i j = x T 
i 

x j if x i and x j 
re connected. 

After the construction of the manifold graph, the framework of

R can be formulated as follows with a decision function f ( x ), 

in 

f 

l+ u ∑ 

i, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 + γ1 

l ∑ 

i =1 

V ( x i , y i , f ) + γ2 ‖ 

f ‖ 

2 
K (1) 

here V ( x i , y i , f ) is the loss function, such as the hinge loss

ax {0, 1- y i f ( x i )} for support vector machine (SVM), or the square

oss ( y i − f ( x i )) 
2 for regularized least square classifier (RLSC), in

his way, the MR framework naturally embodies the specific algo-

ithms LapSVM and LapRLSC [3] . ‖ f‖ 2 
K 

is a regularization term for

moothness in the Reproducing Kernel Hilbert Space (RKHS). The

hird term guarantees the prediction smoothness over the mani-

old graph, which can be further written as 

l+ u ∑ 

, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 = 2 f T Lf (2) 

here f = [ f ( x 1 ), …, f ( x l + u )] T , and L is the graph Laplacian given by

 = D - W, W is the weight matrix of graph G and D is a diagonal

atrix with the diagonal component given by D ii = 

∑ n 
j=1 w i j . Ac-

ording to the Representer theorem [3] , the minimizer of problem

1) has the form 

f ∗(x ) = 

∑ l+ u 
i =1 

αi K( x i , x ) (3) 

here K: X × X → R is a Mercer kernel (the bias of the decision func-

ion can be omitted by augmenting each instance with a 1-valued

lement). 

. Semi-supervised manifold regularization with adaptive 

raph (AGMR) 

.1. Model formulation 

Given labeled instances X l = { x i } l i =1 
with the corresponding la-

els Y = { y i } l i =1 
, and unlabelled instances X u = { x j } n j= l+1 

, where

ach x i ∈ R d and u = n - l . The optimization problem of AGMR can

e formulated as 

min 

f, w i j 

l+ u ∑ 

i, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 

 γ1 

l ∑ 

i =1 

( f ( x i ) − y i ) 
2 + γ2 ‖ 

f ‖ 

2 
K + ηR ( w i j ) 

.t. 
∑ u 

j=1 w i j = 1 

 i j ≥ 0 

(4) 

The first three terms in the optimization function of (4) are the

ame with those in MR, R ( w ij ) is some constraint on the graph

eights, and η is the regularization parameter. Different from MR

eeking the decision function in learning, AGMR seeks both the

ecision function and the weights for the manifold graph. From

he optimization problem in (4) , we can find that: 1) The mani-

old graph in MR is specified before classification, and fixed in the

earning process. While in AGMR, the graph is actually optimized

n the learning process along with its parameters; 2) In AGMR, we

ave 
∑ u 

j=1 w i j = 1 and w ij ≥ 0, in this way, each w ij actually reflects

he probability that x i and x j should be in the same class; 3) With-

ut the constraint R ( w ij ) on each w ij , the solution for each w ij will

egenerate to a trivial one, in which only one element is 1, and the

emainder are all 0. 

Different constraints for the graph weights generate different

odels, thus yield different classification performance. In the fol-

owing, we will respectively use the entropy constraint and the

parse constraint for examples to develop new AGMR methods

ithin the above framework. 
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3.2. AGMR with entropy constraint (AGMR_entropy) 

3.2.1. Model formulation 

To control the uniformity level of the manifold graph weights,

we use an entropy regularization term for R ( w ij ). R ( w i j ) =
−∑ n 

i =1 H( w i ·) where w i · = [ w i 1 , w i 2 , ... w in ] ∈ R n , and H ( w i · ) is the

generalized entropy describing the uniformity level of each w ij ,

j = 1…n . The generalized entropy has several versions, such as the

celebrated Shannon entropy H(v ) = 

∑ n 
i =1 −v i log v i , the L 1 -entropy

H(v ) = 2 − ∑ n 
i =1 | v i − 1 

n | , the L 2 -entropy H(v ) = 1 − v T v and the

L ∞ 

-entropy H(v ) = 1 − max 1 ≤i ≤n v i . Different entropy versions yield

different models, and we will adopt the celebrated Shannon en-

tropy here for example. 

Adopting celebrated Shannon entropy as an example, i.e.,

H( w i ·) = 

∑ n 
j=1 −w i j log w i j , and the square loss function, the opti-

mization can be further written as 

min 

f, w i j 

l+ u ∑ 

i, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 + γ1 

l ∑ 

i =1 

( f ( x i ) − y i ) 
2 

+ γ2 ‖ 

f ‖ 

2 
K + η

∑ n 
i, j=1 w i j ln w i j 

s.t. 
∑ u 

j=1 w i j = 1 

w i j ≥ 0 

(5)

By introducing the entropy constraint, the optimization prob-

lem in (5) actually adopts an Entropy Maximization criterion [6,10] ,

which imposes a uniform distribution for the weights of the man-

ifold graph to avoid a trivial solution. 

3.2.2. Problem solution 

The optimization problem of AGMR_entropy is non-convex with

respect to ( f, w ij ), and we will resort to the alternating iterative

strategy to seek the decision function f ( x ) and graph weights w ij 

respectively. Fortunately, each step has a closed-form solution. 

With fixed w ij , the optimization problem of AGMR_entropy is

actually the same with MR, which can be written as 

min 

f 

l+ u ∑ 

i, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 + γ1 

l ∑ 

i =1 

( f ( x i ) − y i ) 
2 + γ2 ‖ 

f ‖ 

2 
K (6)

As in MR, the minimizer can also be formulated as f ∗(x ) =∑ l+ u 
i =1 αi K( x i , x ) according to the Representation Theorem, and the

solution is 

α = 

(
γ1 K 

T 
l K l + γ2 K + K 

T LK 

)−1 
γ1 K 

T 
l Y (7)

where α = [ α1 , ... αl+ u ] T is the vector of Lagrange multipliers. K l =
( X l , X ) H ∈ R l ×(l + u ) and K = (X , X ) H ∈ R (l+ u ) ×(l+ u ) are the kernel

matrices, where X l and X denote the labeled and the whole

datasets, respectively. Y = [ y 1 , ... y l ] 
T is the vector of class labels for

the labeled data. 

With fixed f ( x ), the optimization problem for w ij can be written

as 

min 

w i j 

∑ n 
i, j=1 w i j 

(
f ( x i ) − f ( x j ) 

)2 + η
∑ n 

i, j=1 w i j ln w i j 

s.t. 
∑ u 

j=1 w i j = 1 

w i j ≥ 0 

(8)

Using the Lagrange multiplier method, the solution for each w ij 

can be written as (the details are given in Appendix A ) 

w i j = 

e −( f ( x i ) − f ( x j ) ) 
2 
/η

∑ n 
j=1 e 

−( f ( x i ) − f ( x j ) ) 
2 
/η

(9)

3.3. AGMR with sparse constraint (AGMR_sparse) 

3.3.1. Model formulation 

In fact, each instance in the manifold graph is connected with

only a few neighbor instances, thus only a few elements of each
eight w i · should be non-zeros, and the rests should be zeros. That

s, each weight vector w i · should be sparse. As a result, we incor-

orate the sparse constraint R ( w i j ) = η1 

∑ u 
i =1 ( x i −

∑ u 
j=1 w i j x j ) 

2 +
2 

∑ l+ u 
i =1 ‖ w i ·‖ 1 into MR, where ‖ · ‖ 1 is the l 1 -norm, η1 and η2 are

egularization parameters. Finally, the optimization problem can be

ormulated as 

min 

f, w i j 

l+ u ∑ 

i, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 + γ1 

l ∑ 

i =1 

( f ( x i ) − y i ) 
2 

 γ2 ‖ 

f ‖ 

2 
K + η1 

∑ u 
i =1 

(
x i −

∑ u 
j=1 w i j x j 

)2 + η2 

∑ l+ u 
i =1 ‖ 

w i ·‖ 1 

.t. 
∑ u 

j=1 w i j = 1 

 i j ≥ 0 

(10)

.3.2. Optimization solution 

The optimization problem of AGMR_sparse is also non-convex

ith respect to ( f, w ij ). We will resort to the alternating iterative

trategy to seek f ( x ) and w ij respectively, each step has a closed-

orm solution. 

With fixed w ij , the optimization problem of AGMR_sparse is

lso the same with MR, i.e., 

min 

f 

l+ u ∑ 

i, j=1 

w i j ( f ( x i ) − f ( x j )) 
2 + γ1 

l ∑ 

i =1 

( f ( x i ) − y i ) 
2 + γ2 ‖ 

f ‖ 

2 
K (11)

nd the solution is already given in (7) . 

With fixed f ( x ), the optimization problem for w ij can be written

s 

min 

w i j 

∑ n 
i, j=1 w i j 

(
f ( x i ) − f ( x j ) 

)2 + η1 

∑ u 
i =1 

(
x i −

∑ u 
j=1 w i j x j 

)2 

 η2 

∑ l+ u 
i =1 ‖ 

w i ·‖ 1 

.t. 
∑ u 

j=1 w i j = 1 

 i j ≥ 0 

(12)

he solution of w ij , we adopt a strategy of auxiliary function [9,20] ,

nally the solution can be formulated as (the details are given in

ppendix B ) 

 ki = w ki 

(
η1 X 

T X + 

1 
2 

F F T 
)

ki 

( η1 X 

T XW ) ki + 

1 
4 

((
F F T 

)
ii 

+ 

(
F F T 

)
kk 

)
+ 

η2 

2 

(13)

here X is the data matrix, i.e., X = [ x 1 , x 2 ,…x n ] ∈ R d × n , where

 i ∈ R d and n is the total number of instances. F is the column vec-

or of classification scores for instances, i.e., F = [ f ( x 1 ) , ..., f ( x n )] ′ ∈
 

n , where f ( x i ) is the classification score for each instance x i . 

.4. Algorithm description 

The optimization of AGMR (including both AGMR_entropy and

GMR_sparse) follows an alternating iterative strategy and the it-

ration starts from an initial f ( x ) by MR. The iteration terminates

hen | J k - J k- 1 | < εJ k- 1 , where J k is the objective function value at the

 th iteration and ε is a pre-defined threshold. The AGMR algorithm

s described as follows, 

roposition 1. The sequence { J ( αt , w ij 
t )} obtained in the above algo-

ithm w.r.t. AGMR converges. 

roof. First, the sequence of the objective function values gener-

ted by the above algorithm decreases monotonically. In fact, the

bjective function J ( α, w ij ) is biconvex [13] in ( α, w ij ). Specifically,

or fixed w ij 
t , the objective function is convex in α, thus the op-

imal α∗ can be obtained by minimizing J ( α, w ij 
t ), or equivalently

ptimizing (6) . Now set αt + 1 = α∗, then J ( αt + 1 , w ij 
t ) = J ( α∗, w ij 

t ) ≤
 ( αt , w ij 

t ). Simultaneously, with current αt + 1 , the objective function

s convex in w ij , thus the optimal w ij 
∗ can be obtained by mini-

izing J ( αt + 1 , w ij ), or equivalently optimizing (8) or (10) . Now set
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Algorithm 1 The algorithm description of AGMR. 

Input X — the input data 

γ 1 , γ 2 and η(or η1 and η2 ) — the regularization parameter 

ε — the iterative stop parameter 

σ — the kernel parameter 

Maxiter — the maximum number for iteration 

Output f ( x ) — the decision function 

w ij — the weights for the manifold graph 

Procedure 

1. Obtain the initial f ( x ) by MR; 

2. Set the initial objective function value to infinity, i.e ., J 0 = INF; 

3. For k = 1…Maxiter 

Update w ij by (9) or (13) ; 

Update α by (7) , and f ( x ) by the Representer theorem with obtained α; 

Update the objective function vaule J k ; 

If | J k - J k- 1 | < εJ k- 1 

Break, return f ( x ) and w ij ; 

Endif 

Endfor 

Table 1 

The comparative results with 10 labeled instances. 

Dataset MR_LP MR_SP AGMR_entropy AGMR_sparse 

Automobile 79.60 ± 0.97 78.80 ± 0.92 79.26 ± 0.82 77.32 ± 0.80 

Bupa 55.34 ± 0.15 45.79 ± 0.18 54.88 ± 0.08 45.55 ± 0.26 

Hepatitis 58.97 ± 4.05 62.00 ± 0.35 68.00 ± 0.15 ∗ 71.86 ± 0.34 ∗

House 53.06 ± 2.45 60.49 ± 1.10 57.25 ± 0.24 ∗ 69.01 ± 1.10 ∗

Ionosphere 70.29 ± 0.17 76.77 ± 0.04 69.71 ± 0.02 74.13 ± 2.96 

Sonar 47.63 ± 0.01 47.97 ± 0.01 47.89 ± 0.02 57.07 ± 0.01 ∗

Spectf 54.98 ± 0.43 54.40 ± 0.73 56.93 ± 0.33 ∗ 55.18 ± 1.07 

Water 67.74 ± 0.25 75.85 ± 2.42 68.89 ± 0.14 ∗ 76.60 ± 2.12 

Wdbc 67.30 ± 0.00 72.61 ± 0.77 68.24 ± 0.98 74.15 ± 1.01 ∗

Bci 50.10 ± 0.01 50.95 ± 0.14 52.25 ± 0.08 ∗ 52.40 ± 0.18 ∗

Ethn 59.64 ± 0.28 59.64 ± 0.78 60.10 ± 0.65 60.65 ± 0.82 ∗

German 61.26 ± 0.28 59.36 ± 0.53 61.82 ± 0.31 60.02 ± 0.53 

Digit1 56.97 ± 1.36 54.92 ± 0.79 54.61 ± 0.10 55.15 ± 0.78 

Isolet 54.21 ± 1.50 65.43 ± 2.62 52.89 ± 0.16 63.98 ± 0.35 

Usps 57.75 ± 0.16 59.70 ± 0.03 60.40 ± 0.07 ∗ 62.56 ± 0.07 ∗

Table 2 

The comparative results with 100 labeled instances. 

Dataset MR_LP MR_SP AGMR_entropy AGMR_sparse 

Automobile 89.83 ± 2.87 90.96 ± 0.96 91.13 ± 0.76 ∗ 92.53 ± 0.89 ∗

Bupa 63.80 ± 6.45 65.76 ± 7.86 64.98 ± 4.63 ∗ 67.32 ± 6.54 ∗

Hepatitis 80.20 ± 4.30 82.86 ± 1.66 82.32 ± 1.26 ∗ 84.51 ± 1.12 ∗

House 91.43 ± 2.31 91.97 ± 1.89 92.03 ± 1.66 92.89 ± 1.37 ∗

Ionosphere 88.00 ± 0.01 88.35 ± 0.01 88.50 ± 0.00 88.98 ± 0.00 

Sonar 75.69 ± 8.51 76.85 ± 8.82 77.20 ± 8.56 ∗ 78.59 ± 7.69 ∗

Spectf 73.17 ± 9.71 79.79 ± 8.51 74.80 ± 9.34 ∗ 80.04 ± 8.62 

Water 1 ± 0 99.22 ± 4.88 1 ± 0 1 ± 0 

Wdbc 91.34 ± 6.23 89.74 ± 5.41 91.87 ± 4.98 90.13 ± 5.07 

Bci 58.95 ± 0.10 59.40 ± 0.09 62.70 ± 0.18 ∗ 63.54 ± 0.12 ∗

Ethn 90.90 ± 0.58 88.41 ± 0.67 89.98 ± 6.45 91.15 ± 6.45 ∗

German 63.36 ± 0.10 65.94 ± 6.45 67.56 ± 6.45 ∗ 69.54 ± 6.45 ∗

Digit1 58.00 ± 0.12 59.20 ± 0.04 61.15 ± 0.09 ∗ 62.38 ± 0.10 ∗

Isolet 98.90 ± 0.01 97.40 ± 0.03 95.40 ± 0.07 95.00 ± 0.09 

Usps 80.00 ± 0.00 79.85 ± 0.05 80.00 ± 0.00 79.99 ± 0.04 

 

 

 

 

 

 

 

 

 

 

 

 ij 
t + 1 = w ij 

∗, then J ( αt + 1 , w ij 
t + 1 ) = J ( αt + 1 , w ij 

∗) ≤ J ( αt + 1 , w ij 
t ). Fi-

ally, J ( αt + 1 , w ij 
t + 1 ) ≤ J ( αt + 1 , w ij 

t ) ≤ J ( αt , w ij 
t ), ∀ t ∈ N . Hence, the

onsequence { J ( αt , w ij 
t )} decreases monotonically. 

Further, since the objective function is non-negative, thus

ower-bounded, as a result, the sequence { J ( αt , w ij 
t )} converges. 

. Experiments 

In this section, we will evaluate the performance of the AGMR

ver 15 UCI and benchmark datasets compared with MR, and its

mprovements adopting different graph construction strategies. In

R, we should construct the manifold graph before classification.

n the graph construction of MR, we usually use the k -nearest

eighbor and heat kernel weighting strategies. In this way, we ac-

ually preserve the local structure of the instance distribution over

he manifold graph, and we will call it local preserving MR (MR_LP

or short) hereafter. Further, we also construct a sparse graph by

reserving the sparse structure of instance distribution, i.e., we can

rst get the graph weights in terms of the sparse representation, 

in 

w i ·
‖ 

w i ·‖ 1 

.t. ‖ 

x i − X w i ·‖ 

< ε 
 = 1 

T w i ·

(14) 

here ε is the error tolerance and generally fixed across various

nstances of the problem. Using the graph weights from (14) , we

an develop a sparse preserving MR method (MR_SP for short). In

he following, we will compare the AGMRs with both MR_LP and

R_SP. For solving the optimization problem in (14) , we resort to

he SLEP toolbox [18] . 

Each UCI data set is randomly split into two halves, one half

or training and the other for testing, and the training set contains

nly 10 labeled instances and the rests are unlabeled. This process

long with the classifier learning is repeated 30 times and the av-

rage testing accuracies are reported. For each benchmark datasets,

here are two settings, one including 10 labeled instances and the

ther including 100 instances. Further, for each dataset and each

etting, there are 12 subsets of labeled data, finally, the average

erformances on the unlabeled data are reported. 

The linear kernel is adopted here. For MR_LP, the neighbor

umber k in the manifold graph construction is fixed to 10. When

0 instances are labeled, γ 1 and γ 2 in all compared methods are

oth fixed to 1, η, η1 and η2 in AGMR are fixed to 1, 1 and 1,

espectively, ε is set to the average distance between all instance

airs. When 100 instances are labeled, the best performances over

he parameter combinations from [0.01, 0.1, 1, 10, 100] are re-

orted. The training process is repeated 20 times and the average

ccuracy and variance are reported in Tables 1 and 2 , respectively,

n which the best performance over each dataset is highlighted

n bold in each row. The values with “∗” over AGMR_entropy and

GMR_sparse indicate a significant improvement over MR_LP and

R_SP, respectively, through the t -test with the confidence interval

t 95%. 

From those tables, we can get several observations as follows: 

� The performance of MR_SP is slightly better than that of MR_LP.

Specifically, when 10 instances are labeled, MR_SP performs

better than MR_LP on 9 out of the 15 datasets, and worse on

5 ones. When 100 instances are labeled, MR_SP performs bet-

ter than MR_LP over 10 out of the 15 datasets, and worse over

5 ones. The reason can be that the manifold graph in MR_LP is

constructed by the k -nearest neighbor and heat kernel weight-

ing strategies. Those strategies turn out to be a kind of artifi-

cial sparse assumptions, which are not informative about the

geodesic distances [2] . 

� The performance of AGMR_entropy is better than that

of MR_LP. Specifically, when 10 instances are labeled,
AGMR_entropy performs better than MR_LP over 9 out of

the 15 datasets, with significant improvements over 4 ones,

and worse over 5 ones. When 100 instances are labeled,

AGMR_entropy performs better than MR_LP over 11 datasets,

with significant improvements over 8 ones, and worse over 2.

As a result, it is better to optimize the graph in classification

rather than pre-define it. 

� At the same time, the performance of AGMR_sparse is better

than that of MR_SP. Specifically, when 10 instances are labeled,

AGMR_sparse performs better than MR_SP over 12 out of the 15

datasets, with significant improvements over 7 ones, and worse

over 4 ones. When 100 instances are labeled, AGMR_sparse per-
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forms better than MR_SP over 13 datasets, with significant im-

provements over 9 ones, and worse over just 1 one. As a result,

the graph optimization in classification can help boost the clas-

sification performance. 

� The performance of AGMR_sparse is better than AGMR_entropy.

Specifically, when 10 instances are labeled, AGMR_sparse per-

forms better than AGMR_entropy over 11 datasets, and worse

over 4 ones. When 100 instances are labeled, AGMR_sparse per-

forms better than AGMR_entropy over 12 datasets, and worse

over 3 ones. Actually, entropy maximization tends to find a uni-

form distribution. While sparseness seeks for a biased or sparse

distribution. It introduces a trade-off between uniformity and

sparseness in terms of the underlying data structure. Such a

balance is data-dependent, and seeking for such a balance is

a worth studying future work for us. 

5. Conclusion 

The performance of MR largely depends on the manifold graph,

which is usually pre-constructed before the classification pro-

cess. However, independently of the classification process, the con-

structed graph does not necessarily benefit the subsequent classi-

fication learning. At the same time, the parameters in the mani-

fold graph of MR are difficult to set due to the limited label infor-

mation in semi-supervised classification. To address those issues,

we combine the graph construction and classification learning to

develop a unified framework AGMR. By adopting the entropy and

sparse constraints for the graph weights, respectively, we derived

two specific methods called AGMR_ENTROPY and AGMR_SPARSE,

respectively. Finally, empirical results show the competitiveness of

AGMR compared to MR and its variants. 

However, there are still works needing investigating in the fu-

ture, e.g., studying the weights constraints in AGMR, and the selec-

tion of parameters in AGMR. 
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Appendix A 

Using the Lagrange multiplier method, we have 

L = 

∑ n 
i, j=1 w i j 

(
f ( x i ) − f ( x j ) 

)2 

+ η
∑ n 

i, j=1 w i j ln w i j −
∑ u 

i =1 λi 

(∑ u 
j=1 w i j − 1 

) (15)

The derivative of L w.r.t. each w ij vanishes at the minimizer,

∀ i = 1 ...n, j = 1 ...n , i.e., 

∂L 

∂ w i j 

= 

(
f ( x i ) − f ( x j ) 

)2 + η(1 + ln w i j ) − λi = 0 (16)

Thus 

w i j = e 
λi −( f ( x i ) − f ( x j ) ) 

2 −η

η (17)

Further, 
∑ u 

j=1 w i j = 1 , thus 

e 
λi −η

η = 

∑ n 

j=1 
e ( f ( x i ) − f ( x j ) ) 

2 
/η (18)

Finally, 

w i j = 

e −( f ( x i ) − f ( x j ) ) 
2 
/η

∑ n −( f ( x i ) − f ( x j ) ) 
2 
/η

(19)
j=1 e 
ppendix B 

For the solution of (12) , we will use the strategy of an auxiliary

unction. The definition of the auxiliary function [20] , a lemma in

16] and several propositions in [22] are quoted as follows: 

efinition 1. G ( F, F ′ ) is an auxiliary function for F ( F ) if the condi-

ions 

 (F , F ′ ) ≥ F (F ) , G (F , F ) = F (F ) 

are satisfied. 

The auxiliary function is a useful concept because of the follow-

ng lemma. 

emma 1. If G ( F, F ′ ) is an auxiliary function of F ( F ), then F ( F ) is

on-increasing under the update 

 

(t+1) = ar g F min G (F , F ′ ) (20)

roposition 2. For any matrices A ∈ R + r ×r , W ∈ R + m ×r , and W 

′ 
 R + m ×r , it holds 

 r( W 

′ T W 

′ A ) ≤
∑ 

i j 

( WA ) i j W 

′ 2 
i j 

W i j 

(21)

roposition 3. For any matrices A ∈ R + m ×r , W ∈ R + m ×r , and W 

′ ∈
 + m ×r , we have 

 r( A 

T W 

′ ) ≤
∑ 

i j 
A i j 

( 

W 

2 ′ 
i j 

+ W 

2 
i j 

2 W i j 

) 

(22)

The optimization problem in (12) can be rewritten as 

 (W ) = T r 
(
F T (D − W ) F 

)
+ η1 T r( X 

T X − 2 X 

T XW 

+ W 

T X 

T XW ) + η2 ‖ 

W ‖ 1 

(23)

emma 2. Let the function G ( W , W 

′ ) be defined as 

 (W , W 

′ ) = T r( η1 X 

T X − 2 η1 X 

T XW − F T WF ) 

+ η1 

∑ 

i j 

( X T XW ) i j W 

′ 2 
i j 

W i j 
+ η2 

∑ 

i j 

(
W 

2 
i j 
+ W 

′ 2 
i j 

2 W 

i j 

)
+ 

∑ 

i j 

(
( (F F T ) ii + (F F T ) j j ) (W 

2 
i j 
+ W 

′ 2 
i j 

) 

4 W i j 

) (24)

then G ( W , W 

′ ) is an auxiliary function of L ( W ). 

By Propositions 2 and 3 , it is easy to conclude that G ( W , W 

′ )
L ( W 

′ ) and G ( W 

′ , W 

′ ) = L ( W 

′ ) . Therefore, the function G ( W , W 

′ )
s an auxiliary function of L ( W 

′ ). With the help of the auxiliary

unctions G ( W , W 

′ ), the update rules for W can be derived by min-

mizing G ( W , W 

′ ). 
The update rules are derived from setting ∂G ( W , W 

′ ) / ∂ W 

′ 
ij to

ero for all W 

′ 
ij . We have 

∂G (W , W 

′ ) 
∂W 

′ 
i j 

= (−2 η1 X 

T X − F F T ) i j + 2 η1 
( X T XW ) i j W 

′ 
i j 

W i j 

+ η2 

(
W 

′ 
i j 

W i j 

)
+ 

( (F F T ) ii + (F F T ) j j ) W 

′ 
i j 

2 W i j 
= 0 

(25)

Finally, the updated rule can be formulated as 

 ki = w ki 

(
η1 X 

T X + 

1 
2 

F F T 
)

ki 

( η1 X 

T XW ) ki + 

1 
4 

((
F F T 

)
ii 

+ 

(
F F T 

)
kk 

)
+ 

η2 

2 

(26)

here X is the data matrix, i.e., X = [ x 1 , x 2 ,…x n ] ∈ R d × n , where

 i ∈ R d and n is the total number of instances. F is the column vec-

or of classification scores for instances, i.e., F = [ f ( x 1 ) , ..., f ( x n )] ′ ∈
 

n , where f ( x i ) is the classification score for each instance x i . 
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